Home Publications Synthesis, characterization, and self-assembly of a tetrathiafulvalene (TTF)-triglycyl derivative

Synthesis, characterization, and self-assembly of a tetrathiafulvalene (TTF)-triglycyl derivative

Pérez-Rentero, S., Eritja, R., Häring, M., Saldías, C., Díaz, D.D.

Applied Sciences (Switzerland), 8 (5), art. no. 671, 2018

 In this work, we describe the synthesis, characterization, and self-assembly properties of a new tetrathiafulvalene (TTF)–triglycyl low-molecular-weight (LMW) gelator. Supramolecular organogels were obtained in various solvents via a heating–cooling cycle. Critical gelation concentrations (CGC) (range ˜ 5–50 g/L) and thermal gel-to-sol transition temperatures (Tgel) (range ˜ 36–51 °C) were determined for each gel. Fourier transform infrared (FT-IR) spectroscopy suggested that the gelator is also aggregated in its solid state via a similar hydrogen-bonding pattern. The fibrillar microstructure and viscoelastic properties of selected gels were demonstrated by means of field-emission electron microscopy (FE-SEM) and rheological measurements. As expected, exposure of a model xerogel to I2 vapor caused the oxidation of the TTF unit as confirmed by UV-vis-NIR analysis. However, FT-IR spectroscopy showed that the oxidation was accompanied with concurrent alteration of the hydrogen-bonded network.